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Abstract 

According to classical ecological theory, biodiversity at ecosystem scale can be viewed as the direct 

product of landscape complexity and information, and the inverse product of energy dissipation. 

The main difference between natural ecosystems and agroecosystems is the external energy driven 

by farmers. Hence, it could be argued that biodiversity in biocultural landscapes can be explained 

by an energy-information-structure model. We developed an Energy-Landscape Integrated 

Analysis (ELIA) to predict biodiversity levels in human-transformed landscapes. ELIA combines 

the energy-flow accounting in agricultural landscapes from abioeconomic point of view and 

landscape ecological metrics that assess the functional structure of the land cover. It uses indicators 

to assess the energy stored in internal loops (E) and the information incorporated into the energy 

network (I) to establish a correlation with the resulting patterns and processes in biocultural 

landscapes (L). We tested the model on biodiversity data using butterflies and birds. The results 

showed positive correlations between butterfly and bird species richness and ELIA, and, above all, 

between I and ELIA. This emphasizes how different strategies of agricultural management 

combined with nature conservation can be employed at certain optimal points in the relationship 

between the energy-information-structure of biocultural landscapes and the biodiversity present 

therein. ELIA modelling is the key to a new research agenda that will be very useful for designing 

more sustainable agroecosystems, metropolitan green infrastructures, and land-use policies, in line 

with the forthcoming Agroecology Transition planned by the European Commission and the Food 

and Agriculture Organization. 

Keywords 

agroecosystem complexity; social metabolism; disturbance ecology; biocultural landscapes; 

species richness; biodiversity conservation.  
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1. Introduction 

For centuries, global human-driven Land Use and Cover Change (LUCC) has stimulated 

the spread of human-modified habitats in many regions including the Mediterranean, thereby 

affecting biodiversity and ecosystem functioning in human-transformed landscapes (Grove and 

Rackham, 2001). Its impact has been manifold and created a very different landscape from the 

mosaics of the past: today, we see the results of organic mixed farming adapted to site-specific 

natural conditions, land-cover homogenization driven by industrial farming, the use of animal feed 

based on fossil fuels, and spontaneous reforestation causing rural abandonment (Giampietro et al., 

2013; Sterling and Ducharne 2008; Ellis et al., 2008). The effects of LUCC on biodiversity are 

already well known (Newbold et al., 2005; IPBES, 2019) and include a general decrease in species 

richness but also changes in species composition due to the rarefaction of habitat specialists and 

expansion of generalists and cosmopolitan species, as well as invasions by alien species (González-

Moreno et al., 2013; Gaertner et al., 2017) facilitated by increasing propagule pressure and 

disturbance levels (Vilà and Ibáñez, 2011; Basnou et al., 2015). All these impacts lead to biotic 

homogenization in the most human-transformed regions (McKinney, 2006).  

Human-transformed landscapes are today the outcome of a shifting interplay between the 

spatial patterns of land-use types driven by the energy flows of human activity and their associated 

ecological processes (Haberl, 2001; Wrbka et al., 2004). A widely acknowledged consensus in 

conservation biology, known as the intermediate disturbance hypothesis (Cornell, 1978), accepts 

that landscape heterogeneity is key to maintaining high biodiversity levels at intermediate 

disturbance levels through the interaction between, on the one hand, ecosystem patch diversity and, 

on the other, the ecological requirements that activate the dispersal abilities of species originating 

from less disturbed patches or allow colonization from the most disturbed ones (Perfecto and 

Vandermeer, 2010; Loreau et al., 2010). However, the outcome also depends on the intensity and 
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spatial distribution of the metabolic (i.e., energy) flows driven by society (Swift et al., 2004; Marull 

et al., 2016b). This recurrent interaction between landscape patterns and socioecological pressures 

has opened up a research field that investigates how the complexity of the energy flows driven by 

farming, livestock rearing and forestry ‘imprint’ diverse spatial patterns of human land-uses that 

give rise either to heterogeneous or homogeneous landscapes able to house very different levels of 

biodiversity (Matthews and Selman, 2006; Parrotta and Trosper, 2012) that can be addressed 

through a network perspective (Jordán, 2022).  

The fundamentals of this research agenda can be found in Morowitz’s theorem that states 

that a flow of energy through a system is a necessary and sufficient condition for generating an 

organized, albeit ephemeral, structure (Morowitz, 2002). The structures of living systems that 

emerge and evolve towards self-reproducing complexity allow us to keep information organized 

and to transfer energy with greater efficiency away from thermodynamic equilibrium (Gladyshev, 

1999). This increase in internal complexity is achieved by exporting entropy to the environment, 

since all living organisms are dissipative structures with multiple metabolic cycles embedded in a 

heterogeneous functional organization over space and time (Schrödinger, 1944). This 

thermodynamic concept of organisms has close similarities to ecosystems’ functioning, which is 

directly related to information-complexity and inversely to entropy (Ho and Ulanowicz, 2005). 

When a living system becomes more complex, it is also metabolically more efficient because it 

increases its internal information rather than its energy intake, thereby also reducing entropy 

(Ulanowicz, 2003).  

Margalef (1958, 1963) indicated that ecosystem succession tends to a decrease in the 

photosynthetic Net Primary Production (NPP) growth rate. In other words, energy combined with 

information increases diversity and does not produce greater uniformity. Similarly, complex 

agroecosystems can store more energy and information at some points that reduce their internal 
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entropy, thanks to the exploitation of other spaces of less complexity that have larger NPP rates. 

Many traditional Mediterranean agroecosystems are the result of this type of balance between 

exploitation and conservation due to the spatial localization of different gradients of human 

intervention, a wise intermediate disturbance pattern resulting in heterogeneous landscape mosaics 

(González-Bernáldez, 1981). 

The combination of an energy-flow pattern driven by complex information regarding how 

energy is redistributed across space is a good starting point for modelling human-landscape 

relationships. According to Margalef (1991), “the relationship between the external energy inputs 

and the dimensions that characterize the spatial patterns of its distribution” gives rise to the 

functional structure of landscape mosaics able to host higher biodiversity than other homogeneous 

landscapes. To test this hypothesis, Marull et al. (2016a, 2019b) developed an Energy-Landscape 

Integrated Analysis (ELIA) of agroecosystems that considers both the investment of energy stored 

within (E) and the information held in the whole network of socio-metabolic energy flows (I) to 

correlate their interplay (E·I) with the functional structure of the resulting biocultural landscape (L). 

This implies assessing whether the energy reinvested and redistributed by farming-driven 

metabolic flows can lay the foundations for studying the linkages that exist between social 

metabolism, landscape ecology and biodiversity, which in the final instance will help generate 

resilient agroecosystems (Ho et al., 2018) and sustainable land-use policies (Padró et al., 2020).  

Testing Margalef’s hypothesis requires specifying and accounting for the ecological 

disturbance exerted by the information-driven external energy that farmers incorporate into the 

landscape. The Human Appropriation of Net Primary Production (HANPP) is a quantitative 

estimate of the potential annual biological productivity reduced by human activities (Haberl et al., 

2007; Krausmann et al., 2013). It represents an initial approach to the interplay between 

anthropogenic disturbances and wildlife’s ability to withstand them. Intermediate HANPP values 
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are able to sustain greater biodiversity in human-modified landscapes than higher ones that largely 

decrease habitat differentiation and negatively affect the provision of food chains free from human 

colonization (Barnes et al., 2006). Thus, Marull et al. (2016a) developed an Intermediate 

Disturbance Complexity (IDC) model to assess how different levels of anthropogenic disturbance 

at regional scale affect landscape functional structure. Results show a hump-shaped relationship 

between landscape complexity, free NPP available for non-domesticated species, and biodiversity 

levels (Marull et al., 2016a, 2018). However, it depends greatly not only on the overall flux balance 

of photosynthetic biomass but on the intensity and distribution of socio-metabolic flows associated 

with either land-use mosaics or homogeneous land covers in agroecosystems (Swift et al., 2004; 

Peterseil el al., 2004).  

The ELIA modelling goes a step further than the previous IDC explorations of the links 

between intermediate levels of socio-metabolic human disturbance, and the ecological functioning 

of biocultural landscapes carried out at regional scale (Marull et al., 2018). It measures E as the 

proportion of energy remaining in the agroecosystem, and I as the network of flows that allows 

farmers to reproduce the landscape L ‘fund components’ due to the information embedded in the 

system. According to the fund-flow bioeconomic approach, all biophysical flows that sustain 

societal metabolism are provided by living funds that, to continue providing them, they also need 

to be nourished and reproduced (Georgescu-Roegen, 1971). This approach leads to a circular 

bioeconomic view that assesses the sustainability of socioecological systems in terms of the 

reproducibility of the living fund components within the biophysical structures of our societies. In 

agroecosystems, this means both the reproduction of living funds such as soil fertility, which 

requires replenishment with organic matter and nutrients (Maeder et al., 2002), and aboveground 

biodiversity, which requires heterogeneous landscapes with sufficient NPP free from human 

appropriation (Tscharntke et al., 2012). The way in which these internal energy flows of 

agroecosystems recirculate and temporarily store energy within agroecosystem is by interlinking 
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their living funds with each other through a set of bioconversions, similar to how food chains in 

ecosystems do it. 

We use this energy-information-structure model (Fig. 1) to predict the locations of two 

important and particularly well-known biodiversity components, butterflies and birds, in the 

human-transformed landscapes here employed as empirical example. The aim is to test Margalef’s 

hypothesis that the complex landscape mosaics of traditional organic agriculture were – and 

continue to be – good for biodiversity conservation (Margalef, 1991). Using butterfly and bird 

transects in the Barcelona Metropolitan Region (BMR), we account for the association between 

landscape patterns (composition and spatial configuration), ELIA components (E, I, L) and 

biodiversity (species richness and total observations). After applying the ELIA model, we use 

Structural Equation Modelling (SEM) to assess how social metabolism affects the capacity of 

metropolitan landscapes to host these indicators of biodiversity. 

2. Materials and Methods 

2.1. Study area 

Covering 3,200 km2 and with a population of 4.5 million, the BMR is one of the most 

densely populated regions in Europe (Fig. 2). However, this region still possesses several important 

natural and semi-natural areas boasting considerable ecological diversity and valuable biocultural 

landscapes. Contrasting topography (elevations ranging from 0 to 1700 m a.s.l.) and climate (with 

NE-SW gradients from moist to dry and from less to more continental) afford it greater climatic 

and land cover variability than most Mediterranean areas and are responsible for the great 

biodiversity present in this highly human-transformed territory. The region contains more than 40 

habitat types of European interest (according to 92/43 EU Directive), including natural (forests, 

scrublands and grasslands; 60% of the region) and semi-natural habitats (croplands; 21%).  

2.2. The Energy-Landscape Integrated Analysis (ELIA) 
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As explained, ELIA is a spatially explicit model for an energy-information-landscape 

integrated analysis based on information theory applied to ecology (Marull et al., 2016b). It 

combines the landscape functional structure (L) with the interlinking pattern of energy flows driven 

by farming (E) and the information they contain (I). ELIA summarises both natural and cropland 

production in agroecosystems (Fig. 3) through a combination of internal (vertical axis) matter-

energy flows derived from photosynthesis, and external matter-energy flows coming from human 

society through the farmers’ labour and knowledge (left-hand side of the horizontal axis). These 

flows interact across the agroecosystem functioning and give rise to a final product consumed and 

dissipated by the human society as well (right-hand side of the horizontal axis). The ELIA graph is 

the depiction of this socio-metabolic biophysical interaction with nature in human-transformed 

ecosystems. Accordingly, the flows of energy carriers from the solar radiation photosynthetically 

converted into biomass (i.e., the itinerary of the photosynthetic Net Primary Production – NPP – 

along the vertical axis) interact with the flows farmers invest (i.e. the itinerary of the external energy 

carriers moving along the horizontal axis). All matter-energy flows that arrive at a node split into 

two, one incoming flow recirculates within the agroecosystem, and another outgoing flow ends up 

in the agri-food basket of consumable products delivered to society (which, in some cases, is 

wasted).  

The ELIA graph (Fig. 3) resulting from this pairwise distribution of flows distinguishes 

between three main internal loops that characterize agroecosystem functioning: 1) the most 

‘natural’ cycles (e.g. forestry and livestock grazing on natural pastures), which merely extract some 

of the NPP; the rest is left to internal recirculation without directly interfering with the reproductive 

natural cycling of these flows, which end up decomposed as organic matter that temporarily 

accumulates energy in fertile soils where ecological turnover recommences; 2) the ‘cropland’ 

cycles, which require a direct input of farmers’ labour through ploughing, seeding, weeding, 

harvesting and fertilizing the soils, where NPP is reinitiated on arable land; and 3) the livestock-



 

9 

 

raising cycle, through which a share of the previous biomass flows that circulate in loops 1 to 2 are 

diverted to feed farmers’ herds that, in turn, recirculate manure into cropland and pastureland while 

provisioning livestock products to the societal agri-food chains. The more linked the flows of matter 

and energy moving through these three cycles of a mixed farming, the more complex and endowed 

with information the agroecosystem is. 

The plant biomass obtained from ecosystem photosynthesis is the actual Net Primary 

Production (NPPact), i.e., the energy source for all the heterotrophs that live there. The biomass 

included in the NPPact that becomes available for heterotrophic species splits into Unharvested 

Biomass (UB) and the share of Net Primary Production harvested by farmers (NPPh) (Fig. 3). The 

UB generally remains in the same place as it was originally grown and can feed farm-associated 

biodiversity. It becomes a source of the Agroecosystem Total Turnover (ATT), which closes the 

cycle of the ‘natural’ subsystem. This subsystem maintains the farm-associated biodiversity and, 

in turn, the production of NPPact, again through the trophic net of non-domesticated species either 

aboveground or in the edaphic decay processes of the soil. NPPh splits into Biomass Reused (BR) 

inside the agroecosystem and Farmland Final Produce (FFP) that flows outside the system. BR is 

an important flow that remains within the agroecosystem thanks to the farmers’ investment aimed 

at directly or indirectly maintaining two basic funds: livestock and soil fertility. Hence, BR closes 

the ‘farmland’ subsystem circle.  

Then, BR is split into the share that goes to feed and bed domestic animals as Livestock 

Biomass Reused (LBR), which can be added to the Livestock Total Inputs (LTI) and Farmland 

Biomass Reused (FBR). In turn, these flows add up to Farmland Total Inputs (FTI) as seeds, green 

manure, and other plant-based fertilizers (Fig. 3). These energy linkages in the graph enable us to 

see to what extent land-use management is carried out by integrating or not the basic living funds 

of the agroecosystem. Finally, domestic animals perform bioconversion, and then the LBR flow 
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splits into Livestock Final Produce (LFP) and internal Livestock Services (LS). LFP includes a wide 

range of food and fibre products, while LS services include driving force and animal manure. 

Together they make up Livestock Produce and Services (LPS).  

The ‘farmland’ and ‘livestock’ subsystems are partially closed within agroecosystems and 

offer a Final Produce (FP) that is consumed and dissipated outside, and also receive External 

Inputs (EI). Therefore, UB, BR and LS regulate the internal flows that lead to a higher or lower 

circularity in the pattern of energy networks in agroecosystems (Fig. 3). They constitute important 

flows of recirculating biomass that contribute to the maintenance of the agroecosystem living funds, 

that is, associated biodiversity, soil fertility and livestock. Conversely, their weakening denotes an 

increase in the linearity and external dependence of the agroecosystem. 

The circularity of matter-energy flows is kept within the agroecosystem because the outputs 

of one subsystem serve as inputs for the next subsystem, thereby allowing for the temporary storage 

of energy carriers and information within its dissipative structure interlinking their living funds 

through a set of energy bioconversions. That said, there is an exception to this rule that occurs when 

energy carriers circulating inside the agroecosystem, due to farmers’ mismanagement, are 

converted into a ‘resource out of place’, i.e. waste. We consider waste an energy flow that cannot 

be integrated into the structured recirculation of matter-energy of the agroecosystems, either 

because it exceeds their carrying capacity or because the way it is disposed of does not render it 

useful for neither keeping alive the agroecosystems’ funds nor to meet societal goals. In some cases, 

the monetary cost of certain biomass flows is larger than the benefits they generate, and this can 

lead to misuse. The result is a waste flow. 

Sometimes a fraction of NPPact can be wasted, such as crop stubble or tree pruning, and are 

burnt rather than properly composted and used as fertilizer, as it often occurred in past times when 

they were used as bedding (straw), home heating (branches), or animal feed (leaves and green shots 
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browsed). The same may happen with a fraction of the LPS generated by agro-industrial feedlots 

whose excess is spread on cropland beyond its carrying capacity, and eventually contaminates the 

water table (a resource out of place). If they exist, Farmland Waste (FW) and Livestock Waste (LW) 

do not contribute to the renewal of the agroecosystem’s funds; they neither enhance its internal 

complexity nor meet human needs.  

2.2.1. Measuring energy storage as a reinvestment of energy cycles (E) 

We understand agroecosystem complexity to be the differentiation of dissipative structures 

(e.g., metabolic cycles) that allows for a diversity of potential ranges in the system’s behaviour. 

The more complex the space-time differentiation of these structures, the more energy is stored 

within a living system. Hence, higher mean values of even βi mean that agroecosystems are 

increasing in complexity because the different cycles are connected, and the residence time of the 

stored energy increases thanks to a greater number of interlinked energy transformations circling 

within. Accordingly, our way of calculating the energy stored and needed to keep the 

agroecosystem’s funds functioning is as follows (Eq. 1): 

Eq.1 

𝐸 =
𝛽2 + 𝛽4

2
𝑘1 +

𝛽6 + 𝛽8

2
𝑘2 +

𝛽10 + 𝛽12

2
𝑘3. 

𝑘1 =
𝑈𝐵

𝑈𝐵 + 𝐵𝑅 + 𝐿𝑆
, 𝑘2 =

𝐵𝑅

𝑈𝐵 + 𝐵𝑅 + 𝐿𝑆
, 𝑘3 =

𝐿𝑆

𝑈𝐵 + 𝐵𝑅 + 𝐿𝑆
, 

Where the coefficients 𝑘1, 𝑘2, 𝑘3 account for the share of reusing energy flows that are 

circulating through each of the three subsystems (Fig. 3), which allows us to differentiate the 

agroecosystems’ fund composition and make their energy patterns comparable. E remains within 

the range [0,1]. An E close to 0 implies a low reuse of energy flows, usually associated with 

industrial agroecosystems, which are highly dissipative and dependent on external inputs. An E 
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close to 1 implies the existence of internal cycles only, meaning land abandonment (which is 

associated with the loss of biocultural landscapes) or to a simple extractive use of the land (i.e., 

foraging or hunting).  

E assesses the amount of all the energy flows that are returned to the agroecosystem relative 

to the total amount of energy flowing across each one of the three subsystems. If we pool the three 

subsystems together, we are adopting a landscape agroecology standpoint focused on what happens 

with the energy carriers flowing across the different land units driven by farmers. This allows us to 

link farming energy analysis with landscape ecology assessment. 

2.2.2. Measuring information as the complexity of energy flow patterns (I) 

According to Information Theory applied in ecology (Hirata and Ulanowicz, 1984; Grueber 

et al., 2011), agroecosystems have a quantity of information embedded in their network structure 

that allows their reproduction to take place over time. This information can be assessed through the 

graph complexity, i.e., the degree to which energy flow is equally distributed across all edges and 

nodes of the graph or, conversely, is concentrated only on some edges and nodes. An equal 

distribution of energy flows across the edges that link the nodes of a graph (Fig. 1) means that the 

information carried cannot be known beforehand (Shannon and Weaver, 1949). Therefore, the 

information given by each event is the highest that can be transmitted by the channel considered 

(in this case the agroecosystem to the farmers that manage them). This type of information 

accounting can be seen as a measure of uncertainty, or the degree of freedom for the system to 

behave and evolve. It is called ‘information-message’ and registers the likelihood of the occurrence 

of a pair of events.  

Energy Information (I) is always site-specific (Font et al., 2020), an important trait from a 

cultural standpoint. In general, when the I of balanced agroecosystem decrease, information has 

been lost or transferred from the site-specific traditional agroecological knowledge possessed by 
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farmers, and located at the landscape level, towards higher hierarchical scales (i.e., big corporations 

that produce and sold the seeds, fertilizers, herbicides and pesticides to industrial farmers). Some 

important parts of agroecosystem functioning are thus no longer controlled at landscape level but 

linked to increasingly globalised agri-food chains (Tello and González de Molina, 2017).  

We used a Shannon-Wiener Index for a metric of I, adapted to be applied over each pair of 

βi, so that this indicator will show whether the βi pairs are evenly distributed or not. This metric 

accounts for the balance of pairwise energy flows that exit from each node in every sub-process 

(Eq. 2):  

Eq. 2 

𝐼 = −
1

6
(∑ 𝛽𝑖 log2 𝛽𝑖

12

𝑖=1

) (𝛾𝐹 + 𝛾𝐿)(𝛼𝐹 + 𝛼𝐿), 

𝛾𝐹 =
𝑈𝐵 + 𝑁𝑃𝑃ℎ

2(𝑈𝐵 + 𝑁𝑃𝑃ℎ + 𝐹𝑊)
, 𝛾𝐿 =

𝐿𝑆 + 𝐿𝐹𝑃

2(𝐿𝑆 + 𝐿𝐹𝑃 + 𝐿𝑊)
 

𝛼𝐹 =
𝐹𝐸𝐼𝑟

2(𝐹𝐸𝐼𝑟 + 𝐹𝐸𝐼𝑛𝑟)
, 𝛼𝐿 =

𝐿𝑆 + 𝐿𝐹𝑃

2(𝐿𝐸𝐼𝑟 + 𝐿𝐸𝐼𝑛𝑟)
 

Base 2 logarithms are applied as the probability is dichotomous. The introduction of the 

information-loss coefficients 𝛾𝐹 , 𝛾𝐿 ensures that I values remain lower than 1 when the 

agroecosystem presents farm and/or livestock waste. We have also introduced the coefficients 

𝛼𝐹 , 𝛼𝐿 as a penalization for the use of non-renewable external inputs, which entail an internal 

information loss given that the agroecosystem functioning is no longer self-reproductive.  

I values close to 1 have an equal distribution of incoming and outgoing energy flows, where 

the ‘information-message’ embedded in the agroecosystem structure is high; on the other hand, I 

values close to 0 indicate probability patterns that are far from equally distributed, containing and 

providing less information. These lower I values correspond to disintegrated agroecosystems with 
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either low site-specific information, which may be related to an industrialised farm system, or, 

conversely, to an almost ‘natural’ turnover with no external inputs and no harvests. Conversely, 

agroecosystems where I = 1 have equally well-distributed incoming and outgoing energy flows in 

each interlinked sub-process, which probably correspond to mixed farming systems where external 

inputs are balanced with the local energy recirculation. Therefore, E measures the energy reinvested 

and temporarily stored in the agroecosystem, and I assesses how farmers redistribute this energy in 

the land-matrix. Needless to say, the more complex (i.e., internally differentiated and interlinked) 

an agroecosystem is, the greater the farming information required to manage it. 

2.2.3. Measuring energy imprint through the landscape structure (L) 

To assess the energy imprinted in the landscape we use L, a metrics of landscape 

heterogeneity that indicates the capacity of differentiated landscape mosaics to offer a range of 

habitats that sustain biodiversity (Loreau et al., 2010). The underlying assumption is that species 

richness associated with agricultural landscapes depends on the landscape heterogeneity of land 

covers measured at scales larger than plot and farm scale (Eq. 3).  

Eq. 3 

𝐿 = − ∑ 𝑝𝑖 log𝑘+1 𝑝𝑖

𝑘

𝑖=1

 

where k is the number of different land covers (potential habitats) in each case and there 

are k+1 possible land covers in each unit of analysis. We consider that the existence of urban land 

cover results in a loss of potential habitats. Thus, 𝑝𝑖 is the proportion of land covers i in every unit 

of analysis. These L values can be seen as a proxy for guaranteeing farm-associated biodiversity, 

whereby species whose populations are disturbed by agriculture can find safe haunts nearby by 

activating their own dispersal abilities. The more diverse the vegetated land cover of an 
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agroecological landscape, the more likely it is to be able to withstand discontinuous disturbances 

through dispersion towards less disturbed or undisturbed spaces in the landscape. 

2.2.4. Measuring the Energy-Landscape Integrated Analysis (ELIA) 

After having defined the three ELIA indicators (E, I and L), we can analyse their 

relationship. We surmise that the interplay between E and I will jointly lead to complexity, 

understood as a balanced level of intermediate self-organisation. We assume that an 

agroecosystem’s complexity of energy flows (𝐸 · 𝐼) is related to the most diverse landscapes where 

the ecological patterns and processes that sustain farm-associated biodiversity are stronger. 

Therefore, the ELIA index that combines the agroecological landscape functional-structure with the 

complexity of the interlinking pattern of energy flows, and can be taken as a proxy for the 

agroecosystem’s biodiversity (Marull et al., 2019a) (Eq. 4): 

Eq. 4 

𝐸𝐿𝐼𝐴 = (
(𝐸 · 𝐼) 𝐿

𝑚𝑎𝑥{𝐸𝐼}𝑎
)

1/3

 

where E is the energy storage, I the information carried by the network structure of energy 

flows, and L the diversity of land covers, viewed as the energy imprint on the landscape structure. 

The equilibrated 𝑚𝑎𝑥{𝐸𝐼}𝑒 = 0.6169 (𝑘𝑖 =
1

3
) implies subsystem equilibrium and no waste. When 

there is no such equilibrium, the absolute 𝑚𝑎𝑥{𝐸𝐼}𝑎 = 0.7420 (𝑘𝑖 = 1) and, even though this last 

combination is unlikely in an agroecosystem, it is possible in a theoretical mathematic case. Hence, 

ELIA theoretically ranges from 0 to 1 for any value of the parameters considered.  

In order to understand the relationship between the stored energy (E), the information it contains 

(I) and its impact on the landscape (L), we should consider a three-dimensional model (Fig. 3c; see 

a 3D video in Supplementary Material) that can be interpreted in the sense that it is culture (the 
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site-specific knowledge passed down from generation-to-generation, combined with knowledge of 

opportunities originating from outside the farm system) what allows farmers to manage the energy 

entering the agroecosystem in order to meet their needs and societal goals while ensuring the 

reproduction of its living funds in a healthy state. 

The socio-metabolic analysis is based on the BMR’s energy flow-fund approach to 

agroecosystems (Tello et al., 2016), and uses data from the Spanish Ministry of Agriculture and the 

Catalan Institute of Statistics (Cattaneo et al., 2018). The landscape composition and configuration 

was calculated using the 2009 Land Cover Map of Catalonia (www.creaf.uab.es/mcsc/). 

2.3. Species studied 

Birds and butterflies are recognized as excellent biodiversity indicators in both natural and 

human-modified landscapes. Their use as bioindicators comes from the variability between species 

and their ability to respond quickly to environmental changes such as agricultural intensification 

and land abandonment (Santos et al., 2008; Melero et al., 2016; Stefanescu et al., 2010; Vallecillo 

et al., 2008). We used butterfly data generated by the Catalan Butterfly Monitoring Scheme 

(CBMS; http://www.catalanbms.org/), a project that has been running for the past 25 years. The 

survey consists of a network of sites where visual counts of adult butterflies along transects (Fig. 

2) are undertaken by volunteers. At each site butterfly surveys are performed weekly during the 

flight period of the imagoes (March–September) along lineal transects of ca. 700-2500 m in length 

(mean and median length = 1715 and 2010 m, respectively; 5 m in width). Each transect is divided 

into smaller sections according to the dominant habitat type, giving 6–14 sections per transect. The 

number of individuals (i.e., observations) are then recorded per species in each section, and then 

summarized per transect. We used 91 butterfly transects from the CBMS (2009). In the case of 

birds, we obtained data from the Catalan common bird monitoring scheme (SOCC; 

www.giraffa.co/ico-catalan-ornithological-institute/). Transects consist of a 3-km walk with six 

http://www.creaf.uab.es/mcsc/
http://www.catalanbms.org/
http://www.giraffa.co/ico-catalan-ornithological-institute/


 

17 

 

sections of 500 m along which observers record all birds seen and heard, and then summarize data 

per transect (Fig. 2). Two censuses are performed annually for breeding species (April/May and 

May/June) and two for wintering species (December and January). We used 23 bird transects from 

the BMR (2009). 

2.4. Landscape factors 

A land cover map of the BMR (2009) was used to evaluate the landscape structure in both 

butterfly and bird transects. These biodiversity databases consist of 91 bird transects (linear buffer: 

500 m) and 23 butterfly transects (circular buffer: 750 m). In these buffers (Fig. 2), a set of 

landscape metrics of landscape composition and configuration were obtained using GIS (ArcGIS) 

methods. For landscape composition, we calculated the proportion of main land-cover categories 

(forest, scrubland, cropland and built-up) per buffer, while for landscape configuration (Marull et 

al., 2019), we used the land heterogeneity (i.e., land-cover diversity), edge density (i.e., the sum of 

edge length divided by buffer area), polygon density (i.e., the amount of patches per buffer area), 

the largest patch index (i.e., the area percentage of the largest patch in the buffer), effective mesh 

size, a defragmentation measure proposed by Jaeger (2000), and, finally, the ecological 

connectivity, inferred from the ecological connectivity index proposed by Marull and Mallarach 

(2005).  

2.5. Statistical analyses 

As a test of ELIA using biodiversity data components, we used the observed abundance 

(i.e., total number of butterfly observations) and species richness of butterflies and birds along the 

study transects. Despite species richness and abundance are often considered weakly related with 

ecosystem function, we have preferred using them because of their simplicity instead of other 

proxies (e.g., redundancy or richness in functional groups) that could need an ad hoc definition of 

these groups. In order to disentangle the direct and indirect effects on biodiversity of (i) energy 
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storage and distribution and (ii) landscape composition and configuration, Structural Equation 

Models (SEM) were built for each of the studied biodiversity groups (butterflies, and breeding and 

wintering birds). Specific SEM were performed for species richness and the abundance of all 

pooled butterfly species and, in the case of birds, separately for nesting and wintering species. The 

SEM took into account the direct effects of the three ELIA components (E, I, L) and their indirect 

effects reflected in landscape composition (Cm) using land covers as variables, and in landscape 

configuration (Cn) using landscape metrics as variables. In order to reduce the number and the 

redundancy of variables in the SEM, we performed a Principal Component Analysis (PCA) on Cm 

and Cn (Table 1). Analyses were performed using the SEM package in R (Fox et al., 2016). 

3. Results and discussion  

3.1. Testing the ELIA model against empirical biodiversity data 

Our study provides evidence that the societal metabolic flows driven by farming imprint 

different landscapes (L) with agroecosystems which enhance or decrease populations and species 

richness of butterflies and birds depending on the interplay between energy storage and its 

distribution pattern (E·I). The significant results of SEM are summarized in Figs. 4 and 5; the 

complete data are given in Tables S1 to S8 in the Supplemental Material.  

The butterfly Principal Component Analysis (Table 1) shows that the first factor is the land-

cover composition of the landscape (Cm1; 43.9% of variance), which obtains the highest loading 

for forest, while the second (Cm2; 35.5%) has the greatest loading for cropland. The first 

component of land metrics assessing landscape configuration through land metrics (Cn1; 72.4%) 

has negative loadings for diversity and fragmentation but positive loadings for grain size and 

connectivity, while the second component is more heterogeneous and contributes much less to 

explaining the variance (Cn2; 12.2%) despite being mostly associated with connectivity metrics 

(including effective mesh size).  
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The SEM results (Fig. 4) show that total butterfly observations (TBOB) are positively 

associated to ELIA values; species richness (TBSR) shows no significant correlation with this 

model. ELIA is negatively associated with Cm1 in the TBSR model but not in the TBOB model. In 

both models, Cm1 and Cn1 were negatively associated. The R2 for the endogenous variables of 

TBSR and TBOB models were 0.316 and 0.266, respectively. When disentangling the effects of 

ELIA components (E, I and L), I has a positive association with both TBSR and TBOB, while E 

and L are only significant and positively associated with TBOB. Landscape composition (Cm) and 

configuration (Cn) are not significantly associated with any biodiversity component, although Cm1 

is negatively associated with ELIA values in both models and Cm2 is negatively associated with I 

only in the TBOB model. The R2 for the endogenous variables of TBSR and TBOB are 0.420 and 

0.334, respectively. 

In the bird Principal Component Analysis, the first factor of landscape composition (Cm1; 

39.3% of variance) has the highest loading for forest, while the second factor (Cm2; 31.8%) has 

the greatest loadings for scrubland and cropland (Table 1). The first factor of landscape 

configuration (Cn1; 53.6%) has higher (negative) loadings for landscape diversity and 

fragmentation, while the second (Cn2; 27.3%) has greater (positive) association for ecological 

connectivity and effective mesh size.  

The SEM results (Fig. 5) show that breeding bird species richness (BBSR) and wintering 

bird species richness (WBSR) are positively related to ELIA values and Cm2 but negatively related 

to Cn2. ELIA is negatively related to Cn1 in both models but only to Cm1 in the BBSR model. Cn2 

and Cm1 are also negatively associated in this model. The R2 for the endogenous variables of BBSR 

and WBSR are 0.244 and 0.210, respectively. If we disentangle the effects of ELIA components (E, 

I and L), I and E are positively and negatively correlated, respectively, to both BBSR and WBSR. 

L is only associated negatively with WBSR. E is negatively associated with Cm2 in both models, 
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and with Cm1 only in the BBSR model. L and Cm1 are negatively associated in this last model. 

The R2 for the endogenous variables of BBSR and WBSR are 0.321 and 0.329, respectively. 

3.2. Comparing ELIA results with Margalef’s hypothesis 

We checked Margalef's hypothesis regarding the capacity of biocultural landscape mosaics 

resulting from a complex distribution of external energy flows of farming to host high biodiversity 

by comparing the links present within the spatial energy-information structure with the species 

richness of butterflies and bird populations in the Barcelona Metropolitan Region (Margalef, 1991; 

Marull et al., 2018, 2019a). The results obtained suggest that agroecosystems could play a key role 

in halting the serious decline of butterfly populations in Europe (Van Swaay et al., 2012), a finding 

that can also be taken as proxy for many other current biodiversity threats (Thomas, 2005). The 

importance of the energy redistribution (I) to structure landscape mosaics carried out by farmers, 

coincides with recent research highlighting the worrying decline of common bird populations in 

European biocultural landscapes, which is related to the abandonment of age-old land-use patterns 

in human-configured agroecosystems (Inger et al., 2015). 

The Energy-Landscape Integrated Analysis should be an efficient predictor of butterfly and 

bird locations in the studied human-transformed landscapes. Indeed, ELIA can better predict these 

biodiversity locations than if only landscape composition or configuration metrics are taken into 

account. Recent studies in the area have evidenced a parallel decline in species richness and 

functional diversity of butterfly and bird species in human transformed landscapes (Sol et al., 2020; 

Pla-Narbona et al., 2022). The results suggest that farmers’ uneven spatial distribution of the 

biomass energy flows (I) in agroecosystems could be the key factor explaining not only butterfly 

observations and species richness but also breeding species richness and wintering bird species 

richness. This is an important outcome that points to the role farmers’ knowledge plays in the design 

of the ecological functionality of biocultural landscapes through a subtle human-nature relationship 
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(Marull et al., 2019a). It also confirms the hypothesis that the interplay between the energy 

reinvested (E) and redistributed (I) by farmers affects the landscape functional structure (L) and its 

associated biodiversity via the harnessing of biomass flows that loop within these human-

transformed landscapes.  

The analytical advances and positive empirical results obtained mean that the usual 

methodology of energy flow analysis of social metabolism and classical landscape ecology metrics 

need to be adapted, enlarged and integrated to account for the complex cyclical character of human-

driven land use changes in biocultural landscapes. Traditional farm systems with a solar-based 

metabolism tended to organise their land usages according to different gradients of spatiotemporal 

intensity, thereby ensuring an integrated management of different land patches given that their 

whole subsistence depended on the endurance of that very landscape functional structure (Marull 

et al., 2019a). In order to offset the energy lost in the inefficient human exploitation of animal 

bioconversion, on which farmers once had to rely to obtain traction and manure, past organic 

farmers guaranteed that livestock breeding was carefully integrated into their use of cropland, 

pastureland and forestland (Cattaneo et al., 2018). 

While traditional organic farm management schemes with closed energy cycles in complex 

agroecosystems led to landscape mosaics that allowed a land sharing strategy for biological 

conservation (Tscharntke et al., 2012), the agro-industrial farm systems that rely on external flows 

of inputs from underground fossil fuels now enable society to overcome the traditional energy 

dependency on bioconverters (Schaffartzik et al., 2014). As a result, integrated land-use 

management became redundant and the overcoming of this necessity led to the loss of its 

agroecological virtues (i.e. its reproduction of the landscape ‘living fund components’). Nowadays, 

biodiversity conservation in land matrices mostly occupied by biocultural landscapes cannot be 

guaranteed merely through the protection of nature protected areas (land sparing) to compensate 
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for the ever-more intensive industrial agriculture. It requires, rather, an improvement of the 

ecological connectivity and functionality of the whole land matrix by recovering and enhancing 

agroecological landscape mosaics (land sharing). This also means agroecosystems’ functioning at 

landscape level need to be scaled up to cope with and offset the land cost of sustainability (Guzmán 

and González de Molina, 2009). Given that the relationship between energetic and biological 

processes that influence species richness may be due to the intermediate disturbance that 

characterizes biocultural landscape, the integration between social metabolism and landscape 

ecology approaches will be crucial in future developments of sustainable land-use planning. 

4. Conclusion 

The environmental change caused worldwide by the decoupling of energy flows and land 

uses makes it increasingly urgent that societies recover their former landscape efficiency (Marull 

et al., 2010). Depending on the energy storage-distribution (E·I) and how these energy flows are 

imprinted on the landscape (L), agroecosystems either enhance or decrease biodiversity (Marull et 

al., 2019a). Since the lack of an integrated management of energy flows and land-uses is inherent 

to the current global socioecological crisis, its recovery is crucial for sustainable human-

transformed landscapes. As Margalef suggested (Margalef, 1991), “the patterns of energy 

distribution” shaped by farmers’ knowledge (i.e., the distribution of energy flows according to an 

aim) and labour (i.e., the energy investments needed to maintain an agroecosystem’s funds over 

time) are determinant for understanding the locations of bird and butterfly species richness and 

abundance in Mediterranean biocultural landscapes.  

The landscape scale is crucial for managing the challenge of increasing agricultural 

production while improving the state of the environment via a climate-smart and resilient farming 

transition. Neither agroecological intensification nor the application of a circular economy to 

agriculture will be possible without a rearrangement of the landscape complexity that can close 
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their main biophysical cycles and improve their ecoefficiency. This innovative line of research aims 

to contribute to the economic and environmental viability of scaling-up organic agriculture and 

agriculture in general. This can become possible if we learn to use the sustainable design of human-

transformed landscapes to close socio-metabolic cycles, reduce our dependence on non-renewable 

external inputs, and improve ecological processes in order to maintain biodiversity. 
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Figure 1. Our conceptual approach is based on a fundamental idea of Margalef (1991) according to 

which the relationship between the external energy reinvested in the system (E) and the spatial 

‘distribution pattern’ (I) of this energy flows need to be considered to understand how society 

affects the functional structure of biocultural landscapes (L).  

Note: The figure shows: a small metabolic cycle (low E, I and L values); a large metabolic cycle (high E, and low I and L values); many 

small interconnected metabolic cycles (low E, and high I and L values); and many large interconnected metabolic cycles (high E, I and 

L values). The latter case has stored more energy within and has greater capacity to organize the territory in a landscape mosaic (L) that 

becomes less dependent on external energy flows.  
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Figure 2. Butterfly transects (circular buffer: 750m; N=23) and bird transects (longitudinal buffer: 

500m; N=91) analysed in the Barcelona Metropolitan Region (NE Spain) and represented over a 

Land-cover Map (2009).  

Source: Catalan Butterfly Monitoring Scheme and Catalan Ornithological Institute datasets.  
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Figure 3. Methodological approach of the energy-information-structure model: a) Graph model of 

the interlinked energy carriers flowing in an agroecosystem. b) From the graph model, we can 

calculate the energy investment (E), the energy information (I), and the energy ‘imprint’ in the 

landscape structure (L). c) The resulting mathematical model allows the calculation of a three-

dimensional relationship among E, I and L (as an example five land-cover typologies are 

represented), conforming a particular human-transformed landscape. 

Variables: Actual Net Primary Production (NPPact); Unharvested Biomass (UB); Harvested Net Primary Production (NPPh); Biomass 

Reused (BR); Farmland Biomass Reused (FBR); Livestock Biomass Reused (LBR); Farmland Final Produce (FFP); External Input (EI); 

Farmland External Input (FEI); Livestock External Input (LEI); Livestock Total Input (LTI); Livestock Produce and Services (LPS); 
Livestock Final Produce (LFP); Livestock Services (LS); Final Produce (FP); Agroecosystem Total Turnover (ATT); Farmland Total 

Input (FTI); Farmland Internal Input (FII); Farmland Waste (FW): Livestock Waste (LW). nr means no-renewable. βi's are the incoming-

outgoing coefficients. Relations between variables:  NPPact=UB+NPPh; NPPh=BR+FFP; BR=FBR+LBR; EI=FEI+LEI; 

LTI=LEI+LBR; LPS=LFP+LS; FP=FFP LFP; ATT=FTI+UB; FTI=FII FEI; FII=FBR+LS. Solid-line arrows show the energy flows 

that represent the internal and external exchange of energy carriers. Squared-line arrows indicate flows that require biological energy 
conversion (photosynthesis and animal metabolism). Point-line arrows show energy carriers which are no renewable external inputs or 

resources out of place (waste).   
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Figure 4. Structural Equation Model (SEM, see Supplemental Material) applied to the variables 

Total Butterfly Species Richness (TBSR) and Total Butterfly Observations (TBOB), taking into 

account: a) the Energy-Landscape Integrated Analysis (ELIA); and b) the ELIA components 

(Energy Storage, E; Energy Information, I, and Landscape Complexity, L). We have included 

Landscape Composition (Cm; in a and b) and Landscape Configuration (Cn; only in a, because in 

b we have included L using Principal Component Analysis (Table 1).  
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Figure 5. Structural Equation Model (SEM; see Supplemental Material) applied to the variables 

Breeding Bird Species Richness (BBSR) and Wintering Bird Species Richness (WBSP), taking 

into account: a) the Energy-Landscape Integrated Analysis (ELIA), and b) the ELIA components 

(Energy Storage, E; Energy Information, I, and Landscape Complexity, L). We have included 

Landscape Composition (Cm; in a and b) and Landscape Configuration (Cn; only in a, because in 

b we have included L using Principal Component Analysis (Table 1).  
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Table 1. Principal Component Analysis (PCA) applied to the Landscape Composition (Cm) and 

the Landscape Configuration (Cn) variables used in the Structural Equation Model (SEM; see 

Supplemental Material) for the butterfly and the bird transects observed in the Barcelona 

Metropolitan Region. 

Landscape Composition 

Land Cover 
Butterfly transects  Bird transects 

Cm1 Cm2 Cm1 Cm2 

Cropland 0.169 -0.651 0.359 0.571 

Scrubland 0.549 0.561 -0.208 -0.721 

Forestland -0.744 0.031 -0.681 0.319 

Urban area 0.342 -0.511 0.603 -0.229 

Standard deviation 1.325 1.192 1.253 1.127 

Proportion of variance 0.439 0.355 0.393 0.318 

Cumulative Proportion 0.439 0.794 0.393 0.710 

Landscape Configuration 

Land Metric 
Butterfly transects  Bird transects 

Cn1 Cn2 Cn1 Cn2 

Heterogeneity -0.406 0.341 -0.503 -0.083 

Edge Density -0.434 0.244 -0.522 0.059 

Polygon Density  -0.421 0.331   -0.490 -0.005   

Largest Path Index 0.458 -0.097 0.433 -0.308 

Effective Mesh Size  0.354 0.611  0.027 -0.696  

Connectivity 0.367 0.577 -0.216 -0.641 

Standard deviation 2.084 0.857 1.794 1.280 

Proportion of variance 0.724 0.122 0.536 0.273 

Cumulative Proportion 0.724 0.846 0.536 0.809 


